An Energy Saving Support Tool

POWER HiTESTER 3331, 3332

Power measuring instruments

C

3332: Single-phase, 2-wire type that can accurately measure even standby power 3331: Single-phase, 3 -wire and three-phase, 3 -wire type for measuring power of large-scale equipment

Accurate evaluation of consumption power of electrical products

As efficient use of energy for household and office equipment becomes more and more essential, the new POWER HiTESTER 3332 does the job by offering a wide range of power measurement from standby to normal usage. The POWER HiTESTER 3331 is capable of evaluating 3-phase devices, such as industrial air conditioners and refrigerators, or single-phase, large-scale devices. Both power testers deliver high accuracy of $\pm 0.2 \%$ (45 to 66 Hz), direct input up to 50 A , and a broad bandwidth from 1 Hz (the 3331 from 10 Hz) to 100 kHz . System construction is made easy with these compact, lightweight and reasonably priced tools, which come equipped with an external interface as a standard feature. The 3331 and 3332 can be used as a measuring component for a wide range of purposes, from research and development to equipment evaluation. JQA-E-90091

Measurement from minute single-phase power to large-scale 60 kW 3 -phase equipment.

A single-phase power meter compatible with devices with intermittent oscillation in broadband starting from 1 Hz .

The 3332 covers a wide range of power measurement | from standby |
| :---: |
| to |
| sscge |

The 3331 is compatible from single-phase to 3 -phase devices

\square Range Table \square The values in the shaded areas show the common range for the 3331 and 3332. Values in the () show the range of the 3-phase, 3-wire

U	1.0000 mA	2.0000 mA	5.0000 mA	10.000 mA	20.000 mA	50.000 mA	100.00 mA	200.00 mA
15.000 V	15.000 mW	30.000 mW	75.000 mW	150.00 mW	300.00 mW	750.00 mW	1.5000 W	3.0000 W
30.000 V	30.000 mW	60.000 mW	150.00 mW	300.00 mW	600.00 mW	1.5000 W	3.0000 W	6.0000 W
60.000 V	60.000 mW	120.00 mW	300.00 mW	600.00 mW	1.2000 W	3.0000 W	6.0000 W	12.000 W
150.00 V	150.00 mW	300.00 mW	750.00 mW	1.5000 W	3.0000 W	7.5000 W	15.000 W	30.000 W
300.00 V	300.00 mW	600.00 mW	1.5000 W	3.0000 W	6.0000 W	15.000 W	30.000 W	60.000 W
600.00 V	600.00 mW	1.2000 W	3.0000 W	6.0000 W	12.000 W	30.000 W	60.000 W	120.00 W

	500.00 mA	1.0000A	2.0000A	5.0000A	10.000A	20.000A	50.000A
15.000 V	7.5000 W	15.000 W	30.000 W	75.000 W	150.00 W	300.00 W	750.00 W
30.000V	15.000 W	30.000 W	60.000 W	150.00 W	300.00 W	600.00 W	1.5000 kW
60.000V	30.000 W	60.000 W	120.00 W	300.00 W	600.00 W	1.2000 kW	3.0000 kW
150.00 V	$75.000{ }_{(150.00) ~ W ~}^{\text {W }}$	150.00 (300.00) W	300.00 (600.00) W	$750.00{ }_{(1.5000 \mathrm{k})} \mathrm{W}$	$1.5000(3.0000) \mathrm{kW}$	$3.0000(6.0000) \mathrm{kW}$	$7.5000{ }_{(15.000)} \mathrm{kW}$
300.00 V	$150.00{ }_{(300.00)} \mathrm{W}$	$300.00{ }_{(000.00)}^{\mathrm{W}}$	$\left.600.00{ }_{(1.2000} \mathrm{k}\right) \mathrm{W}$	$1.5000{ }_{(3.0000)} \mathrm{kW}$	$3.0000{ }_{(6.0000)} \mathrm{kW}$	$6.0000{ }_{(12.000)} \mathrm{kW}$	$15.000(30.000) \mathrm{kW}$
600.00V	300.00 (600.00) W	600.00 (1.2000 k) W	$1.2000{ }_{(2.4000)} \mathrm{kW}$	$3.0000(6.0000) \mathrm{kW}$	$6.0000{ }_{(12.000)} \mathrm{kW}$	$12.000{ }_{(24.000)} \mathrm{kW}$	$30.000(60.000) \mathrm{kW}$

[^0]
Basic Performance of the 3331/3332

Evaluation of electric equipment such as inverters

High basic accuracy of $\pm 0.2 \%$
More precise measurement with a basic accuracy of $\pm 0.1 \%$ rdg. $\pm 0.1 \%$ f.s. is also possible within the 45 Hz to 66 Hz frequency bandwidth.

- Responsitivity that follows transient power fluctuations

A achieve responses under 0.3 seconds for measurements of transient power fluctuations (Response speed set at FAST).

- Simultaneous integration of current and power at a 6-digit high-resolution state

A maximum of ± 999999 (MWh or MAh) or up to a maximum of 10000 hours (416 days) of integration.

- Systems can be easily constructed

- A compact design that fits a half-rack (rack-mount models also available at special order)
- GP-IB / RS-232C: Data can be transferred to a printer or computer for efficient data management.
- EXT.I/O (External input/output terminal): External control of integration START/STOP, and analog/monitor/D/A

Broadband feature compatible with frequency control devices
Wide range from 1 Hz (the 3331 from 10 Hz) to 100 kHz is included for supporting measurement of inverters.

50A direct input
Measurement of large capacity equipment possible.

- Measuring the effective value of basic wave components only The average rectified effective value indicator method with a 500 Hz low-pass filter can be selected.

Current waveform peak measurement function The current waveform wave peak value and the maximum effective value can be detected.

Abstract

output can be performed for voltage/current/power parameters.

(at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right), 80 \%$ rh sine wave input, power factor $=1$, after 30 minutes warming-up time.) $3331: 23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F} \pm 5.4^{\circ} \mathrm{F}\right)$
Accuracy (Period for which accuracy is guaranteed: 6 months)

Basis of calculation Calculations of the 3331 3-phase, 3-wire mode are as follows in the table below. However, only SUM is displayed. Calculations for the Basis of calculation 3332 follow the values for ch 1 in the table below.

ch	Active power (P)	Apparent power (S)	Reactive power (Q)	Power factor (λ)	Phase angle (\emptyset)
1	P_{1}	$S_{1}=U_{1} \times I_{1}$	$Q_{1}=S_{1} \sqrt{\left(S_{1}^{2}-P_{1}^{2}\right)}$	$\lambda_{1}=\mathrm{S}_{1}\left\|P_{1} / S_{1}\right\|$	$\emptyset_{1}=S_{1} \cos ^{-1}\left\|\lambda_{1}\right\|$
2	P_{2}	$S_{2}=U_{2} \times I_{2}$	$Q_{2}=\mathrm{S}_{2} \sqrt{\left(S_{2}^{2}-P_{2}{ }^{2}\right)}$	$\lambda_{2}=\mathrm{S}_{2}\left\|P_{2} / S_{2}\right\|$	$\emptyset_{2}=\mathrm{S}_{2} \cos ^{-1}\left\|\lambda_{2}\right\|$
SUM	$P_{\text {stum }}=P_{1}+P_{2}$	$S_{\text {sum }}=\frac{\sqrt{3}}{3}\left(S_{1}+S_{2}+S_{3}\right)$	$Q_{\text {stM }}=Q_{1}+Q_{2}$	$\lambda_{\text {stum }}=\mathrm{s}\left\|P_{\text {sism }} / S_{\text {stx }}\right\|$	$\emptyset_{\mathrm{sim}}=\mathrm{s} \cos ^{-1}\left\|\lambda_{\text {sta }}\right\|$

U, I, and P respectively indicate measured values of voltage, current, and active power. However, values are not rounded for display (error: $\pm 1 \mathrm{dgt}$.).
s indicates phase polarity, and is -1 when the current phase leads voltage, and +1 when it lags voltage.

From minute standby power to rush current for motors

Applications that efficiently evaluate electrical equipment

Common features of the 3331 and 3332

- Measurement of rush current during device start-up

Measurement of the current waveform wave peak is possible, and if the peak hold function is used, wave peak detection of the motor rush current waveform (Max. 90A) and the maximum value of the effective value can be done.

- Understanding consumptive and regenerative conditions
Consumptive (+), regenerative (-), and total power integration values can be simultaneously measured on equipment that regenerate power.

\square Special Features of the 3331

- 3-phase line imbalance can be checked

The third phase voltage and current that had not been measured for 2-power measurement systems (2 voltage/2 current) can be calculated by vector calculation and displayed.

U1 voltage display	U2 voltage display			
2975	v		285.55	-
28950	*	if	287.57	v
U3 voltage display			rage voltage display	re

U3 voltage display
Average voltage display for each phase

Measurement of the RMS value for industrial frequency components.

The average rectified effective value indicator method (MEAN) with 500 Hz low-pass filter is employed to measure basic wave RMS values of PWM voltage form inverters.

Integration progress time

Consumptive element (+) integration value

Regenerative element (-) integration value

- The 3331 can be used to measure single phase power for 2 devices

Two devices with single-phase, 2 -wire loads can be simultaneously measured, contributing to lower facilities cost.

Note) Ranges for each channel cannot be independently set.

\square Special Features of the 3332

- Measurement of standby power under 1W

Current input 1 W or less can be precisely measured (guaranted accuracy range is from 7.5 mW) by employing the CT method (input resistance under $2 \mathrm{~m} \Omega$) for minimal instrument damage for current input, and with 150.000 mW ($150 \mathrm{~V}-1 \mathrm{~mA}$ range) in full scale as the highest sensitivity range for 100 V devices. In addition, with guaranteed accuracy from 1 Hz , the 3332is also compatible with intermittent oscillating devices, such as videos.

- Precise calculations of minute standby power

When the $150 \mathrm{~V} / 1.0000 \mathrm{~mA}$ range is selected, integration from $\pm 000.000 \mathrm{mWh}$ can be performed. Low numbers/units are automatically switched to a 6 -digit display, allowing measurement in high resolution.

- Comparative decision function that can be used on the production line

Two items can be chosen from among voltage, current, power (active, reactive, apparent), peak current, power factor, phase angle, frequency and integration value for simultaneous comparative decisions. In addition to $\mathrm{Hi} / \mathrm{In} / \mathrm{Lo}$ LED lamps, decision results are output to contact points. Up to 10 conditions can be stored, a powerful function to reduce repetitive steps on small output/multi-product lines.

devices, such as videos.	Integration display screen
Integration progress time	Current integration display
24.00 .00	28.8080°
1:9.70	${ }^{2} 2.87280$
Other parameters	Active power integration
	Comparator setting screen
Comparative value setting	
$0^{\circ} 450.00^{\circ}$	250.00°
10500	${ }^{--5} 50.00$
--/1-	-u,

Application example using the GP-IB/RS-232C interface

The 3331 and 3332 are equipped with the GP-IB and RS-232C interfaces as standard features, allowing complete control from a computer (except for turning the power supply ON/OFF). In addition, measurement data can be directly downloaded into commercially available spreadsheet software on a computer using application software, making the troublesome creation of test result charts easy, and supporting effective data management.

Example of chart calculation operation with EXCEL*

Time	Woltage(V)	Cl
11:00	101.23	
11:05	101.31	
11:10	101.15	
11:15	101.61	
11:20	101. 60	
11:25	101.26	
11:30	101.13	
11:35	101.51	
11:40	101.46	
11:45	101.89	
11:50	101.92	
11:55	101.05	
12:00	102.02	
12:05	101.59	
12:10	101. 51	

Keeping standby power of household electrical equipment in the range of 1 W and below

A plan for reducing contributions to global warming by raising the efficiency of electrical energy used by household and office equipment must take standby power into consideration. In the Japanese domestic market, precise measuring of minute standby power is needed, especially for manufacturers of audio/video devices, in order to follow a policy of keeping standby power under 1W.

Raising the efficiency of electrical energy consumption to meet the needs of the time
 Energy Star Program

The 1995-10 International Energy Star Plan is a program developed between the United States and Japan with the goal of universally advancing energy efficient office products, such as copy machines, printers, and fax machines.

Phase difference between voltage and current/Correlation function with other parameters

Fluctuation state analyzed in clear waveforms.

Application example of monitor, analog, and D/A output

The 3331 and 3332 are capable of simultaneous output of voltage and current waveforms as well as the active power level, and when connected to a HIOKI MEMORY HiCORDER or Hybrid Recorder, events ranging from long-term fluctuations to transient phenomena (only with MEMORY HiCORDERs) can be recorded. Select one other measurement item (apparent power/reactive power/power factor/integration power capacity/frequency, etc.) to output from the D / A to conveniently record long-term fluctuations.

MEMORY HiCORDERs

To record monitor / analog / D/A output

Recording is made easy with the trigger function in the MEMORY HiCORDER, which records the rush current when a device is started, and with the recording mode, records fluctuations of power/integration values/frequency. Examination and analysis of correlation functions for each factor, including temperature, is another strong feature

8870
Compact but powerful 2-channel
recorder with $1 \mathrm{MS} / \mathrm{s}$ sampling

MR8880-20

CAT III 600 V 1solation across all 4 channels lets yor directly measure 480 V lines safely

8860-50/8861-50
Recording to a A4-width printer up to a maximum of 16 channels (8
channels with the 8860-50)
 MR8847-01/02/03 Choose from 3 memory capacities: 64MW (MR8847-01)
265MW (MR8847-02)
512MW (MR8847-03)

Basic specification
Measurement line : 3332: single-phase, 2-wire
3331: single-phase, 3-wire; 3-phase, 3-wire; singlephase, 2 -wire (channel ranges cannot be independently set)

Measurement item | : Voltage, current, current peak, active power, appare |
| :--- |
| power, reactive power, power factor, phase angle, |
| frequency, power integration, current integration |

Display indication range: 0.1% to 130% of range (zero-suppressed for less than 0.1%) (3332; zero-suppressed for less than 0.2% of V range and $40 \mu \mathrm{~A}$)
3332: Voltage, current, power; Effective input range : 5\% to 120% of measurement range (5% to 100% of 600 V range only)
3331: Voltage, current, power; Effective input range : 1% to 120% of measurement range (1% to 100% of 600 V range only)
Display : Digital display LED, displays 4 items
Display resolution: 99999 counts (other than integration), 999999 counts (integrated value)
Rectification method: Switchable between RMS (true root mean square value) and MEAN (average rectified RMS indication). With voltage only, cutoff frequency is 500 Hz .
Display update rate : Approx 5 times/sec
Analog response time : FAST (0.2 to 0.3 sec) or SLOW (1.6 to 2 sec) (3332; at SLOW 5 to 15 sec)
(Time to enter accuracy range upon sudden change from 0 to 90% or 100 to 10%)
Input resistance (5060 Hz) : Voltage $2 \mathrm{M} \Omega \pm 10 \%$ Current Less than $2 \mathrm{~m} \Omega$
Max. input voltage : Voltage $600 \mathrm{Vrms}, 1100 \mathrm{~V}$ peak
Max. input current: Current 60 Arms , 90A peak
Max. rated voltage to earth : $600 \mathrm{Vrms}, 50 / 60 \mathrm{~Hz}$
Crest factor : Voltage (measurement range $\times 6$) / Measured value or 1100 V / measured value, whichever is lower Current (measurement range $\times 6$) / Measured value or 90 A / measured value, whichever is lower
Analog output : Simultaneous output of voltage, current, active power $\mathrm{DC} \pm 5 \mathrm{~V}$ f.s.
Monitor output : Simultaneous output of voltage and current 1 Vrms f.s.
Scaling : PT/CT/SC ratio Set range 0.001 to 9999 (3331; PT/CT only)
Averaging : Moving average of sampling data is taken for display (1 (off), 8, 16, 32, 64 times) (3332; 1 to 300 times)
Comparator (3332 only) : 2 ch (with ON/OFF function)
Setting items : One item from among voltage/current/active, apparent, reactive power/power factor/phase angle/ frequency/waveform peak/integration value selected for one channel, Hi and Lo level set.
Decisions : Decision and relay output (30V/0.5A) in Hi/In/Lo LED lamps. Relay Hold is possible from external control.

[Voltage/current/power measurement]

Measurement range : By 1-page range table

[Integration measurement]

Number of measurements : 5 times/sec

Measurement range : 0.00000 to $999999 \mathrm{MAh} / \mathrm{MWh}$ (integration time up to 10,000 hours)

[Power factor/phase angle measurement]

Measurement range : -1.0000 (lead) to 0.0000 to 1.0000 (lag)
-180° (lead) to 0.00° to 180.00° (lag)

[Frequency measurement]

Number of channels : 1 ch
Effective input range : $3332 ; 1 \mathrm{~Hz}$ to $100 \mathrm{kHz}, 3331 ; 4 \mathrm{~Hz}$ to 50 kHz
Measurement range : Auto, $500 \mathrm{~Hz}, 100 \mathrm{kHz}$ (3331 ; up to 50 kHz)
[Wave peak measurement]
Measurement items : Displays maximum absolute current value

[D/A output]

Number of channels : 1 ch (15 bit D/A converter, polarity +11 bits)
Output resistance : $100 \Omega \pm 5 \%$
Output content : Voltage, current, active / apparent / reactive power, power factor, phase angle, wave peak, frequency and the integrated value for each channel or sum of the values
Output voltage: $\mathrm{DC} \pm 5 \mathrm{~V} / \mathrm{f} . \mathrm{s}$.
Output update rate : 5 times $/ \mathrm{sec}$
[Interfaces]
GP-IB : Conforms to IEEE-488.1 1987, with reference to IEEE-488.2 1987
RS-232C : Start-stop synchronous, with baud rate of 1200 to 9600 bits/sec

[Other functions]

: External control, Display hold function, maximum value hold,
current peak hold, data backup function, key lock function

Measurement accuracy $\underset{(\text { at }}{3331: 23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}+54^{\circ} \mathrm{F}\right)} \begin{aligned} & 3323^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)\end{aligned}$, max 80% rh, with warm-up time of at least 30 minutes, sine wave input, power factor $=1$, and in-phase voltage 0)

V, A, W : Per accuracy table on page 2
Apparent / reactive : ± 1 dgt. with respect to calculation from measured value (U, I, P)
power
Integration
$\quad: \pm 1$ dgt. with respect to calculation from measured value (U, I, P)
Phase angle $: \pm 1$ dgt. with respect to calculation from measured value (U, I, P)
Frequency $\quad: \pm 0.1 \%$ rdg.$\pm 1 \mathrm{dgt}$.
Wave peak : Measurement accuracy $\pm 1 \%$ f.s.(current peak range) Current peak range: Current range $\times 6$

- General specifications

Location for use : Indoors, altitude to 2000 m
Ambient use humidity: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$, max 80% rh (no condensation)
Ambient storage humidity: $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$, max 80% rh (no condensation) Insulation resistance : $100 \mathrm{M} \Omega$ or greater at DC 500 V

Between voltage/current terminals and case, output terminals and external control terminals, voltage / current terminals and power supply, voltage terminals and current terminals, individual channels, and power supply and case
Withstand voltage : AC 3.32 kV between voltage/current terminals and case, output term-
($50 / 60 \mathrm{~Hz}, 1$ minute) inals and external control terminals, and between individual channels
Certifications Safety
EN61010-1
(Voltage and current input) Pollution factor, 2, overvoltage category III, Anticipated transient overvoltage 6000 V (Power supply) Pollution factor 2 Overvoltage category II, Anticipated transient overvoltage 2500 V EMC
EN61326, EN61000-3-2, EN61000-3-3
Power supply : AC100V to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ (universal power supply) Maximum rated power: 50VA max.
Dimensions and mass: 3332; Approx $210 \mathrm{~W} \times 100 \mathrm{H} \times 261 \mathrm{D} \mathrm{mm}, 2.7 \mathrm{~kg}$ (Approx 8.3"(W)×3.9" (H) × 10.3" (D), 95.3 oz.) 3331; Approx $210 \mathrm{~W} \times 100 \mathrm{H} \times 261 \mathrm{D} \mathrm{mm}, 2.5 \mathrm{~kg}$ (Approx 8.3"(W)×3.9" (H)X $10.3^{\prime \prime}$ (D), 88.2 oz.)

Accessories
(Not including projections such as terminals, feet, and handles) Power cord 1, Ext I/O male connector 1

Thermal coefficient : 3332; Less than $\pm 0.02 \%$ f.s. $/{ }^{\circ} \mathrm{C}, 3331$; Less than $\pm 0.04 \%$ f.s. ${ }^{\circ} \mathrm{C}$
Effect of max. rated voltage: Less than $\pm 0.05 \%$ f.s. (AC 600 V rms, $50 / 60 \mathrm{~Hz}$ applied between to earth in-phase voltage all input terminals and ground)
Effect of power factor : Less than $\pm 0.4 \%$ rdg. (at 45 to 66 Hz , power factor $=0.5$) Less than $\pm 0.23 \%$ f.s. (at 45 to 66 Hz , power factor $=0$)
Effect of extemal magnetic field : $\pm 1.5 \%$ f.s. (at AC $400 \mathrm{~A} / \mathrm{m}$, in $50 / 60 \mathrm{~Hz}$ magnetic field)
Real time $\quad: \pm 100 \mathrm{ppm} \pm 1 \sec \left(\right.$ at 0 to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$)
D/A output : Measurement accuracy $\pm 0.2 \%$ f.s.
Analog output : Measurement accuracy $\pm 0.2 \%$ f.s. (below 45 Hz with SLOW setting)
Monitor output : Measurement accuracy $\pm 0.1 \%$ f.s.

- Dimensional drawing

Orders also accepted for units equipped for rack mounting. Please inquire for details.

POWER HiTESTER 3331

(Single-phase, 3 -wire and three-phase, 3 -wire type)

POWER HiTESTER 3332

(Single-phase, 2-wire type)

Option

PRINTER	9442
AC ADAPTER (For printer, Japan)	$9443-01$
AC ADAPTER (For printer, EU)	$9443-02$
CONNECTOR CABLE (For printer)	9444
RECORDING PAPER (For printer, 10rolls)	1196
GP-IB CONNECTION CABLE (2m (79"))	$9151-02$

PRINTER 9442

Please request a CONNECTOR CABLE 9444 for connecting to the 3331/3332 unit and the AC ADAPTER 9443 when purchasing the PRINTER 9442.

CONNECTOR CABLE 9444

AC ADAPTER 9443
Cord length approx. 1.5 r

HIOKI E. E. CORPORATION
HEADQUARTERS:
81 Koizumi, Ueda, Nagano, 386-1192, Japan
TEL +81-268-28-0562 FAX + 81-268-28-0568
http://www.hioki.com / E-mail: os-com@hioki.co.jp

HIOKI (Shanghai) SALES \& TRADING CO., LTD.:
TEL $+86-21-63910090$ FAX $+86-21-63910360$
http://www.hioki.cn / E-mail: info@hioki.com.cn
HIOKI INDIA PRIVATE LIMITED:
TEL +91-124-6590210 FAX +91-124-6460113
E-mail: hioki@hioki.in
HIOKI SINGAPORE PTE. LTD.:
TEL +65-6634-7677 FAX +65-6634-7477
E-mail: info@hioki.com.sg
HIOKI USA CORPORATION:
HIOKI KOREA CO., LTD.:
TEL +1-609-409-9109 FAX +1-609-409-9108 TEL +82-42-936-1281 FAX +82-42-936-1284
http://www.hiokiusa.com / E-mail: hioki@hiokiusa.com E-mail: info-kr@hioki.co.jp

[^0]: For apparent power and reactive power, the unit of watts in the above table is replaced by VA and var respectively

