

HP 53131A/132A/181A Counters

High-performance, low-cost counters simplify and speed systems and bench frequency measurements

- 225 MHz bandwidth (optional 1.5, 3, 5, or 12.4 GHz)
- 10- or 12-digit resolution with 1s gate time
- HP-IB interface standard
- Data transfer rate of up to 200 fully formatted measurements/sec

A family of universal and RF counters to meet your needs

HP 53131A/132A/181A highperformance counters give you fast, precise frequency measurements at an affordable price. These counters feature an intuitive user interface and one-button access to frequently used functions so you can make accurate measurements quickly and easily.

Real-time digital signal processing technology is used to analyze data while simultaneously taking new readings, speeding measurement throughput. The technology, developed for HP's high-end line of modulation domain analyzers, allows the counters to gather more data for each measurement, so you get higher-resolution measurements in a fraction of the time it takes other reciprocal counters.

The HP 53131A/132A/181A counters offer built-in statistics and math functions so you can scale measurements and simultaneously measure and track average, min/max and standard deviation. Automated limit testing lets you set upper and lower limits for any measurement. An analog display mode lets you see at a glance whether a measurement is within pass/fail limits. The counters flag out-of-limit conditions and can

generate an output signal to trigger external devices when a limit is exceeded. For quick access to frequently used tests, a single keystroke recalls up to 20 different stored front-panel set-ups.

For computer-controlled systems applications, each counter includes a standard HP-IB interface with full SCPI-compatible programmability and a data transfer rate of up to 200 fully formatted measurements per second. The standard RS-232 talk-only interface provides printer support or data transfer to a computer through a terminal-emulation program.

HP 53131A Universal Counter

The two-channel HP 53131A counter offers 10 digits per second of frequency resolution and a bandwidth of 225 MHz. Time interval resolution is specified at 500 ps. An optional third channel provides frequency measurements up to 3 GHz, 5 GHz, or 12.4 GHz. Standard measurements include frequency, period, ratio, time

interval, pulse width, rise/fall time, phase angle, duty cycle, totalize, and peak voltage.

HP 53132A Universal Counter

For applications requiring higher resolution, the HP 53132A offers the same features and functions as the HP 53131A, with up to 12 digits/sec frequency resolution and 150 ps time interval resolution. In addition, the HP 53132A offers advanced arming modes for time interval measurements.

HP 53181A RF Counter

Optimized for RF applications, the single-channel 10 digit/s HP 53181A measures frequency, period and peak voltage. A digit-blanking function lets you easily eliminate unnecessary digits when you want to read measurements quickly. For higher-frequency measurements, choose an optional second channel that provides measurements up to 1.5 GHz, 3 GHz, 5 GHz, or 12.4 GHz. A self-guided shallow menu makes this counter exceptionally easy to use.

HP BenchLink Meter turns your counter into a single-channel data acquisition system

Used in conjunction with a HP 53131A/132A/181A counter, HP BenchLink Meter software gives you the flexibility to configure and run tests from your PC, making data gathering more convenient. HP BenchLink Meter also lets you get more information from your data by providing a variety of basic display modes and analysis tools so you can see your data the way you need it.

HP BenchLink Meter lets you:

- completely configure tests using the HP 53131A/132A/181A counters, including measurement type, number of readings, measurement speed, and more.
- choose display modes from real-time strip chart, histogram, readout, and table mode.
- scale measurements data and make it look the way you want it.
- easily copy captured data to other programs for more complex analysis.

Optional timebases offer increased stability

Optional timebases are available for HP 53131A/132A/181A counters to increase measurement accuracy. Option 010 provides a high stability oven timebase with aging of less than 5×10^{10} per day.

3-year warranty

Each HP 53131A/132A/181A counter comes with operating, programming and service manuals, a power cord and a full 3-year warranty.

Time Base

		Standard (0° to 50° C)	Medium Oven (Option 001)	High Oven (Option 010)	Ultra High Oven (Option 012 for HP 53132A only)
Temperature S (referenced to	•	< 5 x 10 ⁻⁶	< 2 x 10 ⁻⁷	< 2.5 x 10 ⁻⁹	< 2.5 x 10 ⁻⁹
Aging Rate (after 30 days)	Per Day: Per Month: Per Year:	< 3 x 10 ⁻⁷	< 4 x 10 ⁻⁸ < 2 x 10 ⁻⁷	< 5 x 10 ⁻¹⁰ < 1.5 x 10 ⁻⁸	< 1 x 10 ⁻¹⁰ < 3 x 10 ⁻⁹ < 2 x 10 ⁻⁸
Turn-on stabili (in 30 minutes)	ty vs. time		< 2 x 10 ⁻⁷ referenced to 2 Hr	< 5 x 10 ⁻⁹ referenced to 24 Hr	< 5 x 10 ⁻⁹ referenced to 24 Hr
Calibration		Manual Adjust	Electronic	Electronic	Electronic

Note that power to the time base is maintained when the counter is placed in standby via the front panel switch. The internal fan will continue to operate when in standby to maintain long-term measurement reliability.

Instrument Inputs

Input Specifications

Channel 1 & 2 (5313 Channel 1 (53181A)	
Frequency Range	
dc Coupled	dc to 225 MHz
ac Coupled	1 MHz to 225 MHz (50 Ω)
	$30\mathrm{Hz}$ to 225 MHz (1 M Ω)
FM Tolerance	25%
Voltage Range and S	Sensitivity (Sinusoid) ²
dc to 100 MHz	20 mVrms to ±5 V ac + dc
100 MHz to 200 MHz	30 mVrms to ±5 V ac + dc
200 MHz to 225 MHz	40 mVrms to ±5 V ac + dc (all specified at 75 mVrms with opt. rear connectors)3
1	

$^{\rm 1}{\rm Specifications}$ and Characteristics for Channels 1 and 2 are
identical for both Common and Separate configurations.

Voltage Range and S (Single-Shot Pulse) ²	
4.5 ns to 10 ns	100 1/ 101/
Pulse Width	100 mVpp to 10 Vpp (150 mVpp with optional rear connectors) ³
>10 ns Pulse Width	50 mVpp to 10 Vpp (100 mVpp with optional rear connectors) ³
Trigger Level ²	
Range	± 5.125 V
Accuracy	± (15 mV + 1% of trigger level)
Resolution	5 mV

² Values shown are for X1 attenuator setting. Multiply all values by 10 (nominal) when using the X10 attenuator setting.

Damage Level	
50Ω	5 Vrms
0 to 3.5 kHz, 1 M Ω	350 Vdc + ac pk
3.5 kHz to 100 kHz, 1 $M\Omega$	350 Vdc + ac pk linearly derated to 5 Vrms
>100 kHz, 1 MΩ	5 Vrms

When optional additional channels are ordered with opt 060, refer to configuration table for opt 060 under ordering info on page 8. There is no degradation in specifications for this input, as applicable.

³ When the 53131A or 53132A are ordered with the optional rear terminals (Opt 060), the channel 1 and 2 inputs are active on both front and rear of the counter. When the 53181A is ordered with the optional rear terminal, the channel 1 input is active on both front and rear of the counter. For this condition, specifications indicated for the rear connections also apply to the front connections.

⁵ Available for all measurements except Peak Volts. External Arm is referred to as External Gate for some measurements.

⁶ See Specifications for Pulse Width and Rise/Fall Time measurements for additional restrictions on signal timing characteristics

Input Characteristics Channel 1 & 2 (53131A, 53132A)¹ Channel 1 (53181A)

Impedance	$1M\Omega$ or 50Ω
1 M Ω Capacitance	30 pF
Coupling	ac or dc
Low-Pass Filter	100 kHz, switchable -20 dB at > 1 MHz
Input Sensitivity	Selectable between Low, Medium, or High (default). Low is approximately 2x High Sensitivity.
Trigger Slope	Positive or Negative
Auto Trigger Level	
Range	0 to 100% in 10% steps
Frequency	> 100 Hz
Input Amplitude	> 100 mVpp (No amplitude modulation)
Attenuator	
Voltage Range	x10
Trigger Range	x10

Input Specifications⁴ Channel 3 (53131A, 53132A) Channel 2 (53181A)

Frequency Range	
Option 015	100 MHz to 1.5 GHz
(for 53181A only)	(see opt 030 for add'l specs)
Option 030	100 MHz to 3 GHz
Option 050	200 MHz to 5 GHz
Option 124	200 MHz to 12.4 GHz
Power Range and So	ensitivity (Sinusoid)
Option 030	100 MHz to 2.7 GHz: -27 dBm to +19 dBm 2.7 GHz to 3 GHz: -21 dBm to +13 dBm
Option 050	200 MHz to 5 GHz: -23 dBm to +13 dBm
Option 124	200 MHz to 12.4 GHz -23 dBm to +13 dBm
Damage Level	
Option 030	5 Vrms
Option 050	+25 dBm
Option 124	+25 dBm
Characteristics	
Impedance	50 Ω
Coupling	AC

External Arm Input Specifications⁵

-	•
Signal Input Range	TTL Compatible
Timing Restrictions	
Pulse Width	> 50 ns
Transition Time	< 250 ns
Start-to-Stop Time	> 50 ns
Damage Level	10 Vrms

External Arm Input Characteristics⁵

Impedance	1 kΩ
Input Capacitance	17 pF
Start/Stop Slope	Positive or Negative

External Time Base Input Specifications

Voltage Range	200 mVrms to 10 Vrms
Damage Level	10 Vrms
Frequency	1 MHz, 5 MHz, and 10 MHz
	(53132A 10 MHz only)

Time Base Output Specifications

Output Frequency	10 MHz
Voltage	$>$ 1 Vpp into 50 Ω (centered around 0 V)

Measurement Specifications

Frequency (53131A, 53132A, 53181A)

Channel 1 and 2 (53131, 53132); Channel 1 (53181) Range0.1 Hz to 225 MHz

 Channel 3 (53131A, 53132A) Channel 2 (53181A)

 Option 015 (53181 only)
 100 MHz to 1.5 GHz

 Option 030
 100 MHz to 3 GHz

 Option 050
 200 MHz to 5 GHz

Option 124 200 MHz to 12.4 GHz (Period 2 or 3 selectable via HP-IB only)

Period (53131, 53132, 53181)

VSWR

Channel 1 and 2 (53131, 53132); Channel 1 (53181) Range4.44 ns to 10 s

<u>-2.5:1</u>

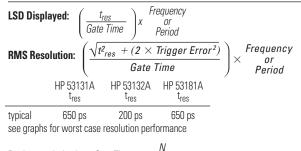
Channel 3 (53131A, 53132A) Channel 2 (53181A)

 Option 015 (53181 only) 0.66 ns to 10 ns

 Option 030
 0.33 ns to 10 ns

 Option 050
 0.2 ns to 5 ns

 Option 124
 80 ps to 5 ns

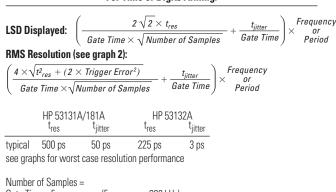

Frequency Ratio (53131, 53132, 53181)

Measurement is specified over the full signal range of each input.

Results Range	10 ⁻¹⁰ to 10 ¹¹
`Auto' Gate Time	100 ms

3

For Automatic or External Arming: (and signals < 100 Hz using Timed Arming)


For Automatic Arming: $Gate\ Time = \frac{vv}{Frequency}$

where N=1 for standard channel Frequency < 1 MHz 4 for standard channel Frequency > 1 MHz 128 for optional channel

120 for optional chamier					
Systematio	: Uncertainty:	(±Time B	lase Error $\pm \frac{1}{Ga}$	$\frac{t_{acc}}{te\ Time}$	Frequency or Period
	HP 53131A t _{acc}	HP 53132A t _{acc}	HP 53181A t _{acc}	_	
typical worst case	350 ps 1.25 ns	100 ps 500 ps	350 ps 1.25 ns		

Trigger: Default setting is Auto Trigger at 50%

For Time or Digits Arming:

Gate Time x Frequency (Frequency < 200 kHz) Gate Time x 200,000 (Frequency > 200 kHz)

Systematic Uncertainty: $\left(\pm Time\ Base\ Error \pm \frac{t_{acc}}{Gate\ Time}\right) x \stackrel{Frequency}{or}{eriod}$

	t _{acc}	t _{acc}
typical	100 ps	10 ps
worst case	300 ps	100 ps

Trigger: Default setting is Auto Trigger at 50%

Time Interval (53131A, 53132A)

Measurement is specified over the full signal ranges of Channels 1 and 2.

Results Range	-1 ns to 10 ⁵ s	
LSD	500 ps (53131)/150 ps (53132)	

Phase (53131A, 53132A)

Measurement is specified over the full signal range of Channels 1 and 2.

Results Range: -180° to +360°

Duty Cycle (53131A, 53132A)

Measurement is specified over the full signal range of Channel 1. However, both the positive and negative pulse widths must be greater than 4 ns.

Results Range: 0 to 1 (e.g. 50% duty cycle would be displayed as .5)

Rise/Fall Time (53131A, 53132A)

Measurement is specified over the full signal ranges of Channel 1. The interval between the end of one edge and start of a similar edge must be greater than 4 ns.

Edge Selection	Positive or Negative
Trigger Default setting is Automotive Trigger at 10% and 9	
Results Range	5 ns to 10⁵ s
LSD	500 ps (53131)/150 ps (53132)

Pulse Width (53131A, 53132A)

Measurement is specified over the full signal range of Channel 1. The width of the opposing pulse must be greater than 4 ns.

Pulse Selection	Positive or Negative		
Trigger	Default setting is Auto Trigger at 50%		
Results Range	5 ns to 10 ⁵ s		
LSD	500 ps (53131)/150 ps (53132)		

Totalize (53131A, 53132A)

Measurement is specified over the full signal range of Channel 1.

Results Range	0 to 10 ¹⁵
Resolution	± 1 count

Peak Volts (53131A, 53132A, 53181A)

Measurement is specified on Channels 1 and 2 for dc signals; or for ac signals of frequencies between 100 Hz and 30 MHz with peak-to-peak amplitude greater than 100 mV.

Results Range	-5.1 V to +5.1 V
Resolution	10 mV

Peak Volts Systematic Uncertainty

for ac signals: 25 mV + 10% of V for dc signals: 25 mV + 2% of V Use of the input attenuator multiplies all voltage specifications (input range, results range, resolution and systematic uncertainty) by a nominal factor of 10.

Time Interval, Pulse Width, Rise/Fall Time (53131 and 53132 only):

RMS Resolution: $\sqrt{(t_{res})^2 + Start Trigger Error^2 + Stop Trigger Error^2}$

Systematic Uncertainty:

- ± (Time Base Error x Measurement) ± Trigger Level Timing Error ± 1.5 ns Differential Channel Error (53131A)
- \pm (Time Base Error x Measurement) \pm Trigger Level Timing Error \pm 900 ps Differential Channel Error (53132A) where t_{res} = 750 ps for the 53131A; 300 ps for the 53132A

Frequency Ratio:
$$\frac{Ch1}{Ch2}$$
, $\frac{Ch1}{Ch3}$, $\frac{Ch2}{Ch1}$, $\frac{Ch2}{Ch1}$, $\frac{Ch3}{Ch1}$ (53131A and 53132A) $\frac{Ch1}{Ch2}$, $\frac{Ch2}{Ch1}$ (53181A)

LSD: Ratio
$$\frac{1}{2}$$
: $\frac{1}{Ch2 \, Freq \times Gate \, Time}$ Ratio $\frac{2}{1}$: $\frac{Ch2 \, Freq}{(Ch1 \, Freq)^2 \times Gate \, Time}$

RMS Resolution:

Ratio
$$\frac{1}{2}$$
: $\frac{2 \times \sqrt{1 + (Ch1 \, Freq \times Ch2 \, Trigger \, Error)^2}}{Ch2 \, Freq \times Gate \, Time}$

Ratio
$$\frac{2}{1}$$
: $\frac{2 \times \text{Ch2 Freq} \times \sqrt{1 + (Ch1 \, Freq \times \, Ch2 \, Trigger \, Error)^2}}{(Ch1 \, Freq)^2 \times \, Gate \, Time}$

For measurements using Ch3, substitute Ch3 for Ch2 in these equations. To minimize relative phase measurement error, connect the higher frequency signal to channel 1.

Systematic Uncertainty: ± 2x resolution

Phase (53131 and 53132)

RMS Resolution:
$$\sqrt{\left((t_{res})^2 + (2 \times Trigger \ Error^2)\right)} \times \left(1 + \left(\frac{Phase}{360^\circ}\right)^2\right) \times Frequency \times 360^\circ$$

Systematic Uncertainty: $(\pm Trigger Level Timing Error \pm 1.5 ns Differential Channel Error) x Frequency x 360° (53131)$ $<math>(\pm Trigger Level Timing Error \pm 900 ps Differential Channel Error) x Frequency x 360° (53132)$

Duty Cycle (53131 and 53132)

RMS Resolution:
$$\sqrt{\left((t_{res})^2 + (2 \times Trigger\ Error^2)\right) \times \left(1 + Duty\ Cycle^2\right)} \times Frequency$$

Gate Time

Auto Mode, or 1 ms to 1000 s

Measurement Throughput

HP-IB ASCII

200 measurements/s (maximum)

Measurement Arming

Wicasurement Arming		
Start Measurement	Free Run, Manual, or External	
Stop Measurement	Continuous, Single, External, or Timed	
Time Interval Delayed Arming	100 µs to 10 s (53131A) 100 ns to 10 s (53132A)	

Arming Modes

(Note that not all arming modes are available for every measurement function.)

Auto Arming: Measurements are initiated immediately and acquired as fast as possible, using a minimum number of signal edges.

Timed Arming: The duration of the measurement is internally timed to a user-specified value (also known as the "gate time").

Digits Arming: Measurements are performed to the requested resolution (number of digits) through automatic selection of the acquisition time.

External Arming: An edge on the External Arm Input enables the start of each measurement. Auto Arming, Timed arming modes or another edge on the External Arm Input may be used to complete the measurement.

Time Interval Delayed Arming: For Time Interval measurements, the Stop Trigger condition is inhibited for a user-specified time following the Start Trigger. The 53132A offers advanced time interval arming capabilities including use of user specified time or Channel 2 events to delay both Start and Stop Triggers.

Measurement Limits

Limit Checking: The measurement value is checked against user-specified limits at the end of each measurement.

Display Modes: The measurement result may be displayed as either the traditional numeric value or graphically as an asterisk moving between two vertical bars.

Out-of-Limits Indications:

- The limits annunciator will light on the front panel display.
- The instrument will generate an SRQ if enabled via HP-IR
- The limits hardware signal provided via the RS-232 connector will go low for the duration of the out-oflimit condition.
- If the Analog Display mode is enabled, the asterisk appears outside the vertical bars, which define the upper and lower limits.

• Fractional Time Base Error (see graph 3)

Time base error is the maximum fractional frequency variation of the time base due to aging or fluctuations in ambient temperature or line voltage:

Time Base Error =
$$\left(\frac{\Delta f}{f} \ aging \ rate + \frac{\Delta f}{f} \ temperature + \frac{\Delta f}{f} \ line \ voltage \right)$$

Multiply this quantity by the measurement result to yield the absolute error for that measurement. Averaging measurements will not reduce (fractional) time base error. The counters exhibit negligible sensitivity to line voltage; consequently the line voltage term may be ignored.

• Trigger Error

External source and input amplifier noise may advance or delay the trigger points that define the beginning and end of a measurement. The resulting timing uncertainty is a function of the slew rate of the signal and the amplitude of spurious noise spikes (relative to the input hysteresis band). The (rms) trigger error associated with a single trigger point is:

$$\text{Trigger Error} = \frac{\sqrt{(\textit{E}_{\textit{input}})^2 + (\textit{E}_{\textit{signal}})^2}}{\textit{Input Signal Slew Rate at Trigger Point}} \; (\text{in seconds})$$

where

Eignut = RMS noise of the input amplifier: 1 mVrms (350µVrms Typical). Note that the internal measurement algorithms significantly reduce the contribution of this term.

 E_{signal} = RMS noise of the input signal over a 225 MHz bandwidth (100 kHz bandwidth when the low-pass filter is enabled). Note that the filter may substantially degrade the signal's slew rate at the input of the trigger comparator.

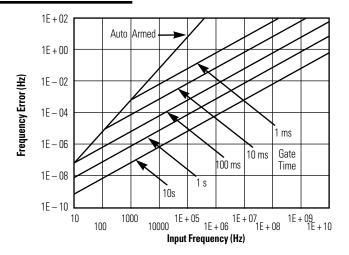
For two-trigger-point measurements (e.g. Rise Time, Pulse Width), the Trigger Errors will be referred to independently as Start Trigger Error and Stop Trigger Error.

• Trigger Level Timing Error (see graph 6)

Trigger level timing error results from a deviation of the actual trigger level from the specified level. The magnitude of this error depends on resolution and accuracy of the trigger level circuit, input amplifier fidelity, input signal slew rate, and width of the input hysteresis band.

The following equations should be summed together to obtain the overall Trigger Level Timing Error. At the "High" sensitivity input setting, the hysteresis band can be assumed to be the sensitivity of the counter input (see page 2). Reduction of input sensitivity or use of the attenuator will increase the size of this band.

Input Hysteresis Error: $\frac{0.5 \text{ x Hysteresis Band}}{Input \text{ Signal Slew Rate at Start Trigger Point}} - \frac{0.5 \text{ x Hysteresis Band}}{Input \text{ Signal Slew Rate at Stop Trigger Point}}$ $\frac{15 \text{ mV} \pm (1\% \text{ x Start Trigger Level Setting})}{Input \text{ Signal Slew Rate at Start Trigger Point}} \pm \frac{15 \text{ mV} \pm (1\% \text{ x Stop Trigger Level Setting})}{Input \text{ Signal Slew Rate at Stort Trigger Point}}$


Differential Channel Error

The differential channel error term stated in several Systematic Uncertainty equations accounts for channel-to-channel mismatch and internal noise. This error can be substantially reduced by performing a TI calibration (accessible via the Utility Menu) in the temperature environment in which future measurements will be made.

Graph 1: HP 53131A/181A - Worst Case RMS Resolution⁷ (Automatic or External Arming)

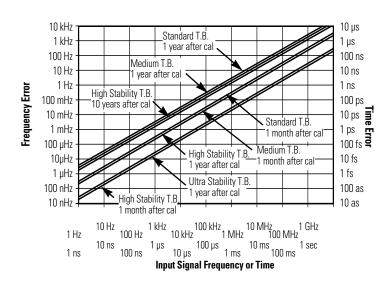
The graphs may also be used to compute errors for Period Measurements. To find the Period error (ΔP) , calculate the frequency of the input signal (F=1/P) and find the frequency error (ΔF) from the chart.

Then calculate the period error as:
$$\Delta P = \left(\frac{\Delta F}{F}\right) \times P$$

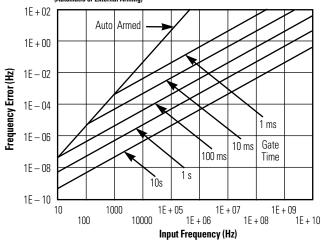
Graph 2: HP 53131A/181A - Worst Case RMS Resolution⁷ (Time or Digits Arming)

⁷Graphs 1, 2, 4 and 5 do not reflect the effects of trigger error. To place an upper bound on the added effect of this error term, determine the frequency error from the appropriate graph and add a trigger error term as follows:

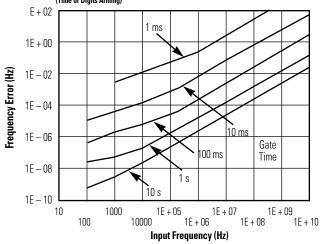
Time or Digit Arming

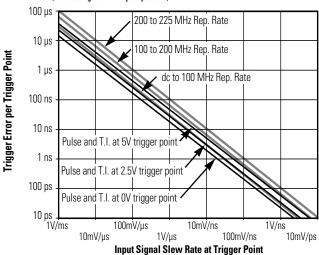

$$\textit{Frequency Error} + \left(\frac{4 \times \sqrt{2} \times \textit{Trigger Error}}{\textit{Gate Time} \times \sqrt{\textit{Number of Samples}}}\right) \times \frac{\textit{Frequency or period}}{\textit{Period}}$$

Automatic or External Arming


$$\textit{Frequency Error} + \left(\frac{\sqrt{2} \times \textit{Trigger Error}}{\textit{Gate Time}}\right) \times \frac{\textit{Frequency}}{\textit{or}}$$

E + 021E + 00Frequency Error (Hz) 1E - 021 ms 1E - 04 10 ms 1E - 0600 ms Gate Time 1E - 0810 s 1E - 1010000 1E+05 1E+06 1E+07 1E+08 1E+09 1E+10 1000 10 100 Input Frequency (Hz)


Graph 3: Timebase Error


Graph 4: HP 53132A - Worst Case RMS Resolution⁷ (Automatic or External Arming)

Graph 5: HP 53132A - Worst Case RMS Resolution⁷ (Time or Digits Arming)

Graph 6: Trigger Level Timing Error (Level Setting Error and Input Hysteresis)

Measurement Statistics

Available Statistics: Mean, Minimum, Maximum,

Standard Deviation

2 to 1,000,000. Statistics may be collected on all

Number of be collected on all measurements or on only those

which are between the limit bands. When the Limits function is used in conjunction with Statistics, N (number of measurements) refers to the

number of in-limit

measurements. In general, measurement resolution will improve in proportion to \sqrt{N} , up to the numerical processing limits of the

instrument.

Measurements: Statistics may be collected for

all measurements except Peak

Volts and Totalize.

General Information

Save and Recall:

Up to 20 complete instrument setups may be saved and recalled later. These setups are retained when power is removed from the counter.

Rack Dimensions (HxWxD):	88.5 mm x 212.6 mm x 348.3 mm
Weight:	3.5 kg maximum
Warranty:	3 years
Power Supply: ac dc (Option 002)	100 to 120 VAC ± 10% - 50, 60 or 400 Hz ± 10% 220 to 240 VAC ± 10% - 50 or 60 Hz ± 10% 10 to 32 Vdc, 4A inrush
ac Line Selection:	Automatic
Power Requirements:	170 VA maximum (30 W typical)
Environment:	0°C to 55°C operating -40°C to 71°C storage
Remote Interface:	HP-IB (IEEE 488.1-1987, IEEE 488.2-1987)
Remote Programming Language:	SCPI-1992.0 (Standard Commands for Programmable Instruments)
Safety:	Designed in compliance with IEC-1010, UL-3111-1 (draft), CAN/CSA 1010.1
EMC:	CISPR-11, EN50082-1, IEC 801-2, -3, -4
Radiated Immunity: Testing	When the product is operated at maximum sensitivity (20 mVrms) and tested at 3 V/m according to IEC 801-3, external 100 to 200 MHz

electric fields may cause

frequency miscounts.

Ordering Information

HP 53131A 10 digit/s, 500 ps Universal Counter HP 53132A 12 digit/s, 150 ps Universal Counter HP 53181A 10-digit/s RF Counter

Accessories included

Each counter comes with standard timebase, power cord, operating, programming and service manuals.

Manual options (please specify one when ordering)

ABA US English ABF French ABO Taiwan Chinese
ABD German ABJ Japanese AB1 Korean
ABE Spanish ABZ Italian AB2 Chinese

Other options

Opt. 001 Medium-stability timebase

Opt. 002 External dc power*

Opt. 010 High-stability timebase

Opt. 012 Ultra-High stability timebase (HP 53132A only)

Opt. 015 1.5 GHz RF input Ch 2 for HP 53181A only

Opt. 030 3 GHz RF input Ch 3 (Ch 2 on HP 53181A)

Opt. 050 5 GHz RF input with type N connector Ch 3 (Ch 2 on HP 53181A)

Opt. 124 12.4 GHz RF input with type N connector Ch 3 (Ch 2 on HP 53181A)

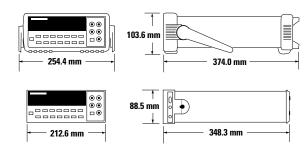
Opt. 060 Rear-panel connectors**

Opt. 0B0 Delete Manual Set

Opt. 1BP MIL-STD-45662A Calibration with test data

Opt. 1CM Rack Mount Kit (P/N 5063-9240)***

Opt. W50 Additional 2-year warranty (5-year total)****


** Opt 060 Configuration Table

	53131/132		<u>53181</u>
Ch1 & Ch2	front & rear (in parallel)	Ch1	front & rear (in parallel)
Ch3	Opt 030 rear only front plugged	Ch2	Opt 015/030 rear only front plugged
Ch3	Opt 050/124 front only	Ch2	Opt 050/124 front only

^{***} For racking two side-by-side, order both Lock-link Kit (P/N 5061-9694) and Flange Kit (P/N 5063-9212)

Accessories

HP 34131A Carrying case HP 34161A Accessory pouch HP 34812A BenchLink Meter software

For more information about HP's nanoVolt meters and all other Hewlett-Packard basic instruments, and for a current sales office listing, visit our web site at

http://www.hp.com/go/bi.

You can also contact one of the following centers and ask for a test and measurement sales representative.

United States:

Hewlett-Packard Company Test and Measurement Call Center

P.O. Box 4026

Englewood, Colorado 80155-4026

1 800 452 4844

Canada:

Hewlett-Packard Canada Ltd.

5150 Spectrum Way Mississauga, Ontario

L4W 5G1

(905) 206 4725

Europe:

Hewlett-Packard

European Marketing Centre

P.O. Box 999

1180 AZ Amstelveen

The Netherlands

(31 20) 547 9900

Japan:

Hewlett-Packard Japan Ltd.

Measurement Assistance Center

9-1, Takakura-Cho,

Hachioji-Shi,

Tokyo 192, Japan

Tel: (81) 426 56 7832

Fax: (81) 426 56 7840

Latin America:

Hewlett-Packard

Latin American Region Headquarters

5200 Blue Lagoon Drive

9th Floor

Miami, Florida 33126

U.S.A.

Tel: (305) 267-4245

(305) 267-4220

Fax: (305) 267-4288

Australia/New Zealand:

Hewlett-Packard Australia Ltd.

31-41 Joseph Street

Blackburn, Victoria 3130

Australia

 $1\,800\,629\,485$

Asia Pacific:

Hewlett-Packard Asia Pacific Ltd. 17-21/F Shell Tower, Times Square,

1 Matheson Street, Causeway Bay,

Hong Kong

Tel: (852) 2599 7777 Fax: (852) 2506 9285

Within Budget. Without Compromise.

Data subject to change.
Printed in the U.S.A. 9/98
© Hewlett-Packard Company 1998
HP BenchLink is a trademark of
Hewlett-Packard Company. Windows is
a trademark of Microsoft Corporation.
5967-6039 EN

^{*} Not compatible with Option 060

^{****} Call HP DIRECT for more information on Opt. W50 prices.